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Abstract. Using the two-band model, the energy spectrum is explicitly obtained as a function
of the spin projection and transverse momentum for two abrupt semiconductor heterostructures
of type II: (i) a double heterojunction and (ii) a system of two quantum wells, one in the valence
band and one in the conduction band. The transverse motion of the carriers and the effective
repulsion of the electron-like and hole-like energy levels give rise to effects which cannot be
properly described in the framework of the single-band theory. The two special cases form the
basis for a discussion of the properties of more general classes of heterostructures of any type.
The spin splitting of the energy spectrum is found to be a characteristic property of asymmetric
heterostructures. Degeneracy occurs in the case of spatially symmetric heterostructures and for
a class of heterostructures which are spatially asymmetric but symmetric with respect to energy.
The possibility of a new type of transition is discussed.

1. Introduction

The energy spectrum (ES) is one of the fundamental physical characteristics of semi-
conductor heterostructures. It is the basis for the theoretical calculation of optical and
transport properties of a system, but it is also of interest in itself. Such features of the
energy spectrum as the (direct or indirect) band gap and the effective masses of the carriers
contain important information about the physical properties of the system.

Highly developed methods of heterostructure growth make it possible to construct
virtually any predetermined band structure (‘band engineering’). The parameters of semi-
conductors vary over wide ranges. This facilitates the construction of a large diversity of
heterostructures by modifying the compositions of several semiconductors. Many different
physical properties needed for particular applications can be achieved. For instance, it has
been possible to build systems with negative differential conductivity, which give rise to
oscillations.

Currently increasing interest is shown in the influence of the spin–orbit interaction on
mesoscopic transport phenomena [1]. The spin–orbit interaction couples spin and spatial
motion; this occurs in a two-dimensional electron gas with asymmetric potential wells [2].

Spin splitting is a well-known property of bulk semiconductors exhibiting bulk inversion
asymmetry. In heterostructures, on the other hand, spin splitting also occurs as a result of
structure inversion asymmetry, as was first pointed out by Bychkov and Rashba [3]. For
two-dimensional hole systems such as GaAs/AlGaAs heterostructures, this leads to the
emergence of spin-dependent hole spectra [4].
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The term ‘structure’ is used in the sense that the spatial dependence of the potential of the
system considered, apart from its atomic periodicity, has some additional slowly varying
modulation which is responsible for the special physical features of the system. If the
energy gap of the semiconductors forming the structure is large compared to the magnitude
of the modulation potential [5], then an energy level can be attributed to a single band. In
this case the single-band effective Schrödinger equation is a good approximation. In the
opposite case the effects of band hybridization become important. One should then make
use of some model Hamiltonian which takes into account the interaction between adjacent
bands. The III–V semiconductors (a typical representative is InSb) are well described by
the Kane Hamiltonian [6]. However, the essential results can also be obtained with the
simpler two-band model [7, 8].

In the present paper the ES of narrow-gap semiconductor heterostructures are
investigated within the two-band approximation, with attention focused on the dependence
on spin and transverse momentum. In section 2 we present the two-band model and discuss
the structure of its solution. In the following sections we analyse the ES for two structures
of type II [9]: (i) a double heterojunction and (ii) a system of two quantum wells, one in
the valence band and one in the conduction band. The first structure, consisting of two
semiconductors with an offset in the work function, was introduced in [10, 11], where
systems of type I were considered. In section 3 we extend the analysis of [10, 11] to higher
values of the offset, thus arriving at systems of type II. Some properties of the second
structure were obtained in [12, 13]. In section 4 we present a complete analysis of this
structure and show that the spin splitting of the ES is a specific feature of the ES of such
a system. Our analysis of the ES for these special cases enables us to exhibit in section 5
some general properties of the ES of narrow-gap heterostructures. These results are valid
for particular symmetries of a heterostructure, independently of its type.

2. The two-band model

The model that we are using was suggested by Keldysh for the description of deep levels
in semiconductors, which cannot be attributed to any single band [7]. The Hamiltonian in
this model is formally identical to that of Dirac and describes IV–VI semiconductors (such
as PbSe, PbTe, SnTe) [14]:

H9 = [vγ 0γ · p+ γ 0εg(z)/2+ ϕ(z)
]
9 = ε9 (1)

where theγ i are the Dirac matrices,p = −i∇, h̄ = 1 and the wave function9 consists
of two spinors, assigned to two interacting bands. The interband velocity matrix element
v is responsible for the hybridization of the bands; it is the analogue of the velocity of
light in the Dirac Hamiltonian. The energy gapεg and work functionϕ depend only on
the coordinatez along the growth axis. This implies that the transverse two-dimensional
momentumk⊥ (perpendicular toz) is a good quantum number.

In the simplest case of constantεg and ϕ one obtains the dispersion of the bulk
semiconductor

ε(±)(k⊥) = ϕ ±
√
ε2
g/4+ v2k2

⊥. (2)

The conduction bandε(+)(k⊥) = ϕ + √(ε2
g/4+ v2k2

⊥) and the valence bandε(−)(k⊥) =
ϕ − √(ε2

g/4+ v2k2
⊥), viewed as branches of a single analytic function, correspond to the

electron and positron branches of the Dirac spectrum. The energy gap of the semiconductor
corresponds to the forbidden energy region between these two branches.
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It can be verified that the ‘pseudoparity’ operatorP = iγ0γ
3(γ⊥ · k⊥)/k⊥ commutes

with the Hamiltonian (1) [15]. This operator, with eigenvaluesλ = ±1, is the analogue of
the helicity operator for the Dirac Hamiltonian. Then, defining theγ -matrices as in [16],
we can rewrite (1) in the form of two pairs (one for eachλ-value) of coupled equations(

εg(z)/2+ ϕ(z) vk⊥λ− v ∂z
vk⊥λ+ v ∂z −εg(z)/2+ ϕ(z)

)(
ψλ
χλ

)
= ελ

(
ψλ
χλ

)
(3)

with two scalar envelope functionsψλ andχλ. Thex-axis is chosen along the direction of
the transverse motion, so from now onk⊥ is a scalar, with both positive and negative values.
The termvk⊥λ plays a role similar to that of the spin–orbit interaction in the single-band
problem. The use of the Dirac Hamiltonian greatly facilitates the treatment of the spin
dependence, because the Hamiltonian intrinsically incorporates it and one does not have to
introduce the spin–orbit interaction separately.

Thus, the ES of a system described by the Hamiltonian (1) is a double-valued function
of k⊥ analogous to (2), which we denote byε(±)i,λ (k⊥), where the indexi labels the energy

level. From (3) one immediately obtains the general relationε
(±)
i,λ (k⊥) = ε(±)i,−λ(−k⊥). Below

we shall derive some other properties of the ES for some particular forms ofεg(z) andϕ(z).

(a) (b)

Figure 1. The valence and conduction bands as functions of the coordinatez along the axis of
growth for the two heterostructures considered in section 3. The region of the energy gap is
shaded. (a) The system with band gaps 211 and 212, and an offsetV in the work function.
(b) The system with band inversion,12 < 0.

3. The double heterojunction

In [10, 11] an abrupt double heterojunction of type I, consisting of two semiconductors with
an offset in the work function, was considered. Here we deal with type-II structures. One
distinguishes two types of system: without (figure 1(a)) and with band inversion (figure 1(b))
[15, 17]. The functionsϕ(z) andεg(z) for the two types of system are given by

ϕ = 0 εg = 211 for |z| > a

ϕ = −V εg = 212 for |z| < a
(4)
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Figure 2. The dispersion along the direction perpendicular to the growth axis in the hetero-
structure of figure 1(a) for1 = 150 meV and several values of the parameterV . (a) V = 21;
the upper level (curve 3) is an MDBS. (b)V = 2.81; the minimum of the ground state (curve
1) lies atk⊥ 6= 0. (c)V = 31; the ground state (curve 1) becomes an MDBS. (It is understood
that the curves in figures 2–4 are continued symmetrically acrossk⊥ = 0.)

where11 > 0, and12 > 0 for figure 1(a) and12 < 0 for figure 1(b).
The dispersion curves of such a system have been shown in [10, 11] to describe

‘motionally dependent bound states’ (MDBS) with terminal points (cf. below).
The eigenvalue equation is obtained from the continuity of the envelope functionsψλ

andχλ at the interfaces and has the following form (for both signs of12):

2v2qκ
{
(ε − V )2+ ε2− 2v2k2

⊥ − 21112− V 2
}−1 = tan(2aκ) (5)
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Figure 3. As figure 2, but for the heterostructure of figure 1(b). (a)V = |1|; the ground
state of the system (curve 0) is an MDBS. (b)V = 21; a new MDBS (curve 3) is observed.
(c) V = 2.81. (d) V = 31; the dispersion reveals a behaviour similar to that of the hetero-
structure without inversion.

whereq2v2 = 12
1 + v2k2

⊥ − ε2, κ2v2 = (ε − V )2 − v2k2
⊥ − 12

2 and the other notation is
introduced in figure 1(a).

Equation (5) is valid for both choices,λ = ±1. Moreover, the dispersion curves are
symmetric under a change of sign of the momentumk⊥. In this section we therefore restrict
ourselves to positive values ofk⊥.
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We have studied (5) for both situations (without and with band inversion) with the
parameterV varying over a wide range: from small valuesV < 11 gradually increasing
up to V > 11 + |12|. For simplicity we shall consider the case of identical gaps,
11 = |12| = 1. The physical results do not depend upon this assumption.

The dispersion curves of the non-inverted heterostructure are presented in figure 2
(figure 3 for the inverted system). The following parameters were used:1 = 150 meV,
2a = 100 Å andv = (1/meff)

1/2 with meff = 0.01m0 (m0 is the mass of the free electron).
For small values ofV , V 6 21, the behaviour of the energy levels is similar to that

obtained in [10, 11]. Without band inversion, all of the curves reveal electron-like behaviour
(figure 2(a)). Curve 3 exhibits the feature of an MDBS: it corresponds to a state localized in
the well only for values of the momentumk⊥ above some terminal point; below this point
the electrons are motionally unbound. Similarly, in the case of band inversion the ground
state has a hole-like behaviour, being localized for momentak⊥ below some terminal point
(curve 0 in figure 3(a)); this state corresponds to the zeroth (supersymmetric) mode which
is specific to heterostructures with band inversion [17].

With increasingV , an MDBS becomes localized for all values ofk⊥ in the non-inversion
case (figure 2(b)). For the system with inversion the terminal point moves tok⊥ = 0, so
eventually the MDBS becomes delocalized for all values ofk⊥ and the corresponding curve
0 disappears (figure 3(b)).

Figure 4. Curve 1 from figure 3(c), on a larger scale.

For higher values ofV , V > 21, several new effects can be observed. In the region
2.51 6 V 6 31 the electron-like valley in the non-inversion case becomes gradually
flatter with increasingV , and atVc ≈ 2.81 an ‘indirect’ valley appears at some momentum
kmin
⊥ 6= 0 (curve 1 in figure 2(b)). In the case of band inversion a new MDBS appears at
V ≈ 21 (curve 3 in figure 3(b)). With further increase ofV , the ground-state curve reveals
a behaviour similar to that in the previous case: it becomes flatter and atVc ≈ 2.8|1| an
indirect valley can be seen (curve 1 in figure 3(c), which is repeated in figure 4 on a larger
scale).

Another peculiarity of the system was observed forV > 3|1|. In contrast to the situation
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considered in [10], where the MDBS always lies above the other eigenstates (which are
localized for allk⊥), here the MDBS is the ground state in this range of parameters, as
revealed by curve 1 in figure 2(c) and curve 1 in figure 3(d). These curves start at some
terminal pointk⊥ 6= 0 and extend towards larger values ofk⊥. A ground-state MDBS
encompassing the pointk⊥ = 0 would be favourable for semiconductor lasers; however, we
have not found such states.

In concluding this section, we discuss which of the ES considered above correspond
to heterostructures which can be realized in practice. The typical materials taken for type-
II structures are InAs/GaSb [18]. Band inversion occurs in PbTe/SnTe, PbSe/SnSe and
HgTe/CdTe [11, 17]. Unfortunately, for all of these materials, the offsetV is not large
enough to give rise to the new features exhibited in figures 2(b), 2(c) and figures 3(c),
3(d). It remains to be seen whether new materials with larger offsetsV can be found or,
conversely, whether more realistic Hamiltonians may be employed which would give rise
to these features for smallerV .

Figure 5. The valence and conduction bands as functions of the coordinatez along the axis of
growth for the two-well structure considered in section 4.

4. The system of two quantum wells

The essential feature of the two-band description [7], namely that electron-like and hole-like
states in narrow-gap systems are described by a single equation, is especially useful for the
theoretical analysis of the semimetal–semiconductor transition. We have studied such a
transition in [12] for the system of figure 5, which is described by the following functions
ϕ(z) andεg(z):

ϕ = 0 εg = 2V2 for |z| > d + a and |z| < d

ϕ = −(V1+ V2)/2 εg = V2− V1 for − (d + a) < z < −d
ϕ = (V1+ V2)/2 εg = V2− V1 for d < z < d + a.

(6)

It was found that for any choice of parameters there always exists an energy gap between
two neighbouring energy levels. This effect is analogous to the level splitting in two identical
quantum wells and is due to an effective interaction (repulsion) of energy levels.

In [12] the discussion was restricted to the case wherek⊥ = 0. In this section we
shall take the dependence of the ES on the transverse momentumk⊥ into account. The
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Figure 6. The dependence of the energy levels on the well widtha for k⊥ = 0 andλ = 1 for
the heterostructure of figure 5 withV1 = 100 meV andV2 = 300 meV.

Figure 7. Dispersion curves for the heterostructure of figure 5 withV1 = 100 meV,
V2 = 300 meV, (a) fora = 80 Å and (b) for a = 130 Å. In (a) the spin-split dispersion
curves are drawn explicitly withε(±)i,−λ(k⊥) = ε(±)i,λ (−k⊥). (b) corresponds toλ = −1. Solid and
dashed lines correspond to hole-like and electron-like levels, respectively.

eigenvalues of this problem are determined by the equation

[q cosh(dq)+ k⊥λ sinh(dq)][tan(aκ1) tan(aκ2)(q
4+ κ2

1κ
2
2)

+ tan(aκ1)(q
2− κ2

1)qκ2+ tan(aκ2)(q
2− κ2

2)qκ1+ 2q2κ1κ2]

+ [k⊥λ cosh(dq)+ q sinh(dq)][− tan(aκ1) tan(aκ2)q
2(κ2

1 + κ2
2)

+ tan(aκ1)(q
2− κ2

1)qκ2+ tan(aκ2)(q
2− κ2

2)qκ1+ 2q2κ1κ2] = 0 (7)

where κ2
1v

2 = (ε + V1)(ε + V2) − v2k2
⊥, κ2

2v
2 = (ε − V1)(ε − V2) − v2k2

⊥ and q2v2 =
v2k2
⊥+V 2

2 −ε2. In figure 6 the resulting ES is plotted as function ofa for k⊥ = 0. Figure 7
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displays the dispersion for two well widths,a = 80 Å anda = 130Å. The following typical
parameter values have been used:V1 = 150 meV,V2 = 450 meV,v = 3× 108 cm s−1 and
d = 300 Å.

The dependence of the eigenenergiesε(+) and ε(−) on the well widthsa reveals an
oscillatory behaviour [12] (cf. figure 6). Fora = 80 Å the wave functions corresponding
to ε(+) are localized in the conduction band well and have anelectron-likebehaviour: the
energy diminishes with increasinga. This is also confirmed by the dispersion of this level
(dashed curves in figure 7(a)). The spectrum of the carriers in the valence band well,
ε(−)(k⊥), is represented by the pair of solid curves in figure 7(a). It is mirror symmetric to
the curvesε(+)(k⊥) (cf. case (ii) in section 5).

For a = 130 Å the upper level has ahole-like behaviour: the energy increases with
increasinga. The dependence of the energy onk⊥ is shown in figure 7(b). This figure can
also be regarded as showing the dispersion of two quantized levels: the hole-like levelε(−)

(represented by the solid line) and the electron-like levelε(+) (represented by dashed line).
The gaps atk⊥ ≈ 2× 106 cm−1 are due to hybridization. The electron-like levelε(+) at
small values ofk⊥ lies below the hole-like levelε(−), proving that a transition has indeed
taken place asa increases from 80̊A to 130 Å. This is also confirmed by the behaviour of
the wave functions corresponding toε(−) for these values ofk⊥: they are now localized in
the valence band well. Figures 6 and 7 exhibit clearly the avoided crossing (repulsion) of
levels.

Recently the InAs/GaSb system has attracted much interest due to its application as an
infra-red device and because of its bipolar conduction [19]. For thick layers the InAs/GaSb
system is a broken-gap type-II system where charge is transferred forming a two-dimensional
electron gas in the InAs layer and a two-dimensional hole gas in the GaSb layer. These
carriers are strongly confined in both energy and coordinate space, and the strong mixing
between electrons and holes will be important. In [13] dispersions were obtained which
were similar to the ones shown in our figures 7(a) and 7(b). However, the authors of [13]
did not give an explicit derivation of their results. Neither did they treat the spin dependence
accurately. The curves obtained in [13] appear to be symmetric underk⊥ → −k⊥, whereas
our analysis shows that this is not the case. Nevertheless, the results of [13] demonstrate
that the avoided-crossing behaviour of the ES obtained in [12, 13] and in the present paper
occurs also in more general forms of heterostructures, where the widths of the two wells
are not equal.

We close with some remarks concerning the experimental observation of the effects
described in this section. The structures having the suggested behaviour are typically built
from III–V semiconductors, e.g. GaAs/InAs/GaAs/GaSb/GaAs. In fact, our two-band model
is not quite suited for these materials; they are more appropriately described by the Kane
model [6]. However, the peculiar avoided-crossing behaviour would also be obtained there.
Experimental tests could, for example, make use of optical properties of the system. A
comparison of the characteristic energies associated with the effects with typical values of
the temperature and the Fermi energy shows that their practical observation may be possible.

5. General properties

It is well known that in the single-band approximation the states in a symmetric one-
dimensional potential can be classified according to their parity: the wave functions are
symmetric or antisymmetric. The wave functions of the Hamiltonian (1) generally do
not have this property. Instead, as mentioned above, they are classified according to the
eigenvaluesλ = ±1 of the helicity operatorP . For some heterostructures with additional
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symmetries the energies can become degenerate. In this section we shall prove several
general properties of the ES for heterostructures of this kind.

(i) Comparing (5) and (7) for the ES we notice a rather important difference: equation
(7) contains terms proportional to the first power ofλk⊥, while (5) does not. From this one
can immediately conclude that for (5) the equalitiesε

(±)
i,λ (k⊥) = ε(±)i,−λ(k⊥) are valid, whereas

for (7) they are not.
In fact, it is seen quite generally that the degeneracy with respect to the helicity quantum

numberλ holds for any heterostructure which is symmetrical under spatial inversion. Let
us consider a system in which the bottom of the conduction bandEc(z) = ϕ(z)+ εg(z)/2
and the top of the valence bandEv(z) = ϕ(z) − εg(z)/2 are symmetric underz → −z.
Then, if the functions(

ψk⊥,λ(z)

χk⊥,λ(z)

)
(8)

satisfy (3) for someε, λ, the functions(
ψk⊥,λ(−z)
−χk⊥,λ(−z)

)
will also be solutions of (3) for the same value ofε, but opposite value ofλ.

(ii) As (7) containsλk⊥ linearly, there is no degeneracy with respect to the sign of
k⊥ in the corresponding ES for fixedλ. Instead, we may suspect that for a system with
Ev(z) = −Ec(−z) the energies occur in pairs,±ε. This can be proved with the aid of the
transformation properties of the solutions of Hamiltonian (1), found in [12]. Indeed, it can
be checked that if the functions (8) are solutions of (3) with eigenvalueε, then the functions(

χk⊥,λ(−z)
−ψk⊥,λ(−z)

)
will also be solutions for the same values ofk⊥ and the sameλ but with the energy−ε.

(iii) On the other hand, whenEv(z) = −Ec(z), the situation is the following. Here
only the relationε(+)i,λ (k⊥) = −ε(−)i,λ (−k⊥) is generally valid. Combined with the relations

ε
(±)
i,λ (k⊥) = ε

(±)
i,−λ(−k⊥), which hold for any system, it yieldsε(+)i,λ (k⊥) = −ε(−)i,−λ(k⊥).

However, if we restrict ourselves to piecewise-constant functionsEv(z) and Ec(z),
degeneracy with respect toλ again holds. This fact can be checked if one fixes some
particular choice of the Dirac matrices [15, 17] and then matches the wave functions on
either side of a heterojunction. As a result, the terms containingλk⊥ linearly will cancel
each other everywhere, so the eigenvalue equation is invariant underk⊥ → −k⊥.

6. Conclusions

In the present work we have studied type-II heterostructures within the two-band model.
Several new effects were found. For the double heterojunction, formed by semiconductors
with an offset in the work function (figure 1), the dispersion curves have very different
shapes, depending on the choice of the parameter values. Conditions were found under
which the MDBS becomes the ground state of the system. For a system of two wells, one
in the valence band, the other in the conduction band (figure 5), the gap between electron-
like and hole-like energy levels has been calculated for all possible values ofk⊥ and all
types of heterostructure.

The behaviour of the dispersion curves under a change of parameters resembles to a
large extent the change of the thermodynamic potential in a second-order phase transition.



Energy spectra of narrow-gap semiconductor heterostructures 10939

Thus, we suggest that a new type of transition may occur in semiconductor heterostructures,
which is different from the usual semimetal–semiconductor transition. In such a transition
the character of the energy gap changes, so the position of the ES minimum moves from
k⊥ = 0 to k⊥ 6= 0. However, more work is needed to determine what physical consequences
this can bring about. Since we are using a one-particle approach, we cannot predict how
many-particle effects could mask this transition.

Some general properties of the ES were investigated for several classes of
heterostructure. For an arbitrary heterostructure, the ES is generally split with respect
to the helicityλ. In the case whereEv(z) = −Ec(−z) one finds that the gap between
hole-like and electron-like energy levels survives also fork⊥ 6= 0 (level repulsion). The ES
of such a structure is symmetric: ifε is an energy level then so is−ε. For systems with
Ev(z) = Ev(−z) andEc(z) = Ec(−z), as well as for systems withEv(z) = −Ec(z) (with
Ev(z), Ec(z) piecewise constant), the energy eigenvalues have been shown to be degenerate
with respect to the helicityλ.
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